Bacteriophage-Based Treatment in Infectious Diseases: What Do We Know So Far? A Narrative Review
DOI:
https://doi.org/10.26738/poem.v2i1.38Keywords:
resistance, phage, bacteriophage, ESKAPE, treatment, bacteriaAbstract
Purpose: To summarize the literature on bacteriophage use in human infection
Methods: Using the MeSH terms “Phage” “Therapy”, “Treatment” “Outcome”, a search was performed in ScienceDirect, Scopus and Pubmed databases, including narrative review, systematic reviews and clinical trials, dating from 2020 till June 2023. A total of 191 articles and 389 articles were retrieved respectively from each database, which after duplication removal, added up to 505. After the primary screen, 131 texts were collected. Following that, a secondary ended up with 56 articles included.
Conclusion: With the constant increase in antibiotic resistance, there is a need for newer antimicrobial agents, which led to the revival of bacteriophages. Due to advances in molecular microbiology, phages became a possibility that has proven itself promising. More studies and funding are needed towards this field, that offers us a promising salvation from the antimicrobial resistance pandemic.
References
Patil A, Banerji R, Kanojiya P, Koratkar S, Saroj S. Bacteriophages for ESKAPE: role in pathogenicity and measures of control. Expert Review of Anti-Infective Therapy. 2021;19(7):845-865. doi:10.1080/14787210.2021.1858800
Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Annals of Clinical Microbiology and Antimicrobials. 2020;19(1):45. doi:10.1186/s12941-020-00389-5
Aloke C, Achilonu I. Coping with the ESKAPE pathogens: Evolving strategies, challenges and future prospects. Microbial Pathogenesis. 2023;175:105963. doi:10.1016/j.micpath.2022.105963
Ebrahimi S, Sisakhtpour B, Mirzaei A, Karbasizadeh V, Moghim S. Efficacy of isolated bacteriophage against biofilm embedded colistin-resistant Acinetobacter baumannii. Gene Reports. 2021;22:100984. doi:10.1016/j.genrep.2020.100984
Schooley RT, Biswas B, Gill JJ, et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrobial Agents and Chemotherapy. 2017;61(10):00954-17. doi:10.1128/aac.00954-17
Wu N, Dai J, Guo M, et al. Pre-optimized phage therapy on secondary Acinetobacter baumannii infection in four critical COVID-19 patients. Emerging microbes & infections. 2021;10(1):612-618.
Lyon R, Jones RA, Shropshire H, et al. Membrane lipid renovation in Pseudomonas aeruginosa - implications for phage therapy? Environmental Microbiology. 2022;24(10):4533-4546. doi:10.1111/1462-2920.16136
Kwiatek M, Parasion S, Nakonieczna A. Therapeutic bacteriophages as a rescue treatment for drug-resistant infections - an in vivo studies overview. Journal of Applied Microbiology. 2020;128(4):985-1002. doi:10.1111/jam.14535
Herridge WP, Shibu P, O’Shea J, Brook TC, Hoyles L. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses. Journal of Medical Microbiology. 2020;69(2):176-194. doi:10.1099/jmm.0.001141
Cano V, March C, Insua JL, et al. K lebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes. Cellular Microbiology. 2015;17(11):1537-1560. doi:10.1111/cmi.12466
Al-Ishak R, Skariah S, Busselberg D. Bacteriophage Treatment: Critical Evaluation of Its Application on World Health Organization Priority Pathogens. Viruses. 2020;13(1):51. doi:10.3390/v13010051.
Royer S, Morais AP, da Fonseca Batistão DW. Phage therapy as strategy to face post-antibiotic era: a guide to beginners and experts. Archives of Microbiology. 2021;203(4):1271-1279. doi:10.1007/s00203-020-02167-5
Satta G, O’Callagharn C, Clokie MRJ, Di Luca M. Advancing bacteriophages as a treatment of antibiotic-resistant bacterial pulmonary infections. Current Opinion in Pulmonary Medicine. 2022;28(3):225-231. doi:10.1097/MCP.0000000000000864
Kuźmińska-Bajor M, Śliwka P, Ugorski M, et al. Genomic and functional characterization of five novel Salmonella-targeting bacteriophages. Virol J. 2021;18:183. doi:10.1186/s12985-021-01655-4
Baral B. Phages against killer superbugs: An enticing strategy against antibiotics-resistant pathogens. Frontiers in Pharmacology. 2023;14:1036051. doi:10.3389/fphar.2023.1036051
Abedon S. Phage therapy pharmacology: calculating phage dosing. Adv Appl Microbiol. 2011;77:1-40. doi:10.1016/B978-0-12-387044-5.00001-7
Wang R, Han JH, Lautenbach E, et al. Clinical prediction tool for extended‐spectrum beta‐lactamase‐producing Enterobacterales as the etiology of a bloodstream infection in solid organ transplant recipients. Transplant Infectious Disease. 2021;23(4):e13599.
Kassa T. Bacteriophages Against Pathogenic Bacteria and Possibilities for Future Application in Africa. Infection and Drug Resistance. 2021;14:17-31. doi:10.2147/IDR.S284331
Adesanya O, Oduselu T, Akin-Ajani O, Adewumi OM, Ademowo OG. An exegesis of bacteriophage therapy: An emerging player in the fight against anti-microbial resistance. AIMS microbiology. 2020;6(3):204-230. doi:10.3934/microbiol.2020014
El Haddad L, Harb CP, Gebara MA, Stibich MA, Chemaly RF. A Systematic and Critical Review of Bacteriophage Therapy Against Multidrug-resistant ESKAPE Organisms in Humans. Clinical Infectious Diseases. 2019;69(1):167-178. doi:10.1093/cid/ciy947
Chang RYK, Nang SC, Chan HK, Li J. Novel antimicrobial agents for combating antibiotic-resistant bacteria. Advanced Drug Delivery Reviews. 2022;187:114378. doi:10.1016/j.addr.2022.114378
Liu D, Van Belleghem JD, de Vries CR, et al. The Safety and Toxicity of Phage Therapy: A Review of Animal and Clinical Studies. Viruses. 2021;13(7):1268. doi:10.3390/v13071268
Kortright KE, Chan BK, Koff JL, Turner PE. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host & Microbe. 2019;25(2):219-232. doi:10.1016/j.chom.2019.01.014
Leontyev АE, Pavlenko IV, Kovalishena ОV, Saperkin NV, Tulupov АА, Beschastnov VV. Application of Phagotherapy in the Treatment of Burn Patients (Review). Sovremennye Tekhnologii V Meditsine. 2021;12(3):95-103. doi:10.17691/stm2020.12.3.12
Guo Z, Lin H, Ji X, et al. Therapeutic applications of lytic phages in human medicine. Microbial Pathogenesis. 2020;142:104048. doi:10.1016/j.micpath.2020.104048
Whittard E, Redfern J, Xia G, et al. Phenotypic and Genotypic Characterization of Novel Polyvalent Bacteriophages With Potent In Vitro Activity Against an International Collection of Genetically Diverse Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology. 2021;11. Accessed December 6, 2023. https://www.frontiersin.org/articles/10.3389/fcimb.2021.698909
Mahmoud ERA, Ahmed HAH, Abo-senna ASM, Riad OKM, Abo- Shadi MMAA– R. Isolation and characterization of six gamma-irradiated bacteriophages specific for MRSA and VRSA isolated from skin infections. Journal of Radiation Research and Applied Sciences. 2021;14(1):34-43. doi:10.1080/16878507.2020.1795564
Walsh L, Johnson CN, Hill C, Ross RP. Efficacy of Phage- and Bacteriocin-Based Therapies in Combatting Nosocomial MRSA Infections. Frontiers in Molecular Biosciences. 2021;8:654038. doi:10.3389/fmolb.2021.654038
Au TY, Assavarittirong C. Combating antimicrobial resistance: an evidence-based overview of bacteriophage therapy. Postgraduate Medical Journal. Published online April 2022:postgradmedj-2022-141546. doi:10.1136/postgradmedj-2022-141546
Flodman K, Tsai R, Xu MY, et al. Type II Restriction of Bacteriophage DNA With 5hmdU-Derived Base Modifications. Frontiers in Microbiology. 2019;10. Accessed December 4, 2023. https://www.frontiersin.org/articles/10.3389/fmicb.2019.00584
Doub JB, Ng VY, Johnson AJ, et al. Salvage Bacteriophage Therapy for a Chronic MRSA Prosthetic Joint Infection. Antibiotics (Basel). 2020;9(5):241. doi:10.3390/antibiotics9050241
Pons BJ, Dimitriu T, Westra ER, van Houte S. Antibiotics that affect translation can antagonize phage infectivity by interfering with the deployment of counter-defenses. Proceedings of the National Academy of Sciences. 2023;120(4):e2216084120. doi:10.1073/pnas.2216084120
Khatami A, Foley DA, Warner MS, et al. Standardised treatment and monitoring protocol to assess safety and tolerability of bacteriophage therapy for adult and paediatric patients (STAMP study): protocol for an open-label, single-arm trial. BMJ Open. 2022;12(12):e065401. doi:10.1136/bmjopen-2022-065401
Liu C, Hong Q, Chang RYK, Kwok PCL, Chan HK. Phage–Antibiotic Therapy as a Promising Strategy to Combat Multidrug-Resistant Infections and to Enhance Antimicrobial Efficiency. Antibiotics (Basel). 2022;11(5):570. doi:10.3390/antibiotics11050570
Fernández L, Cima-Cabal MD, Duarte AC, Rodríguez A, García-Suárez MDM, García P. Gram-Positive Pneumonia: Possibilities Offered by Phage Therapy. Antibiotics (Basel, Switzerland). 2021;10(8):1000. doi:10.3390/antibiotics10081000
Wang X, Xie Z, Zhao J, Zhu Z, Yang C, Liu Y. Prospects of Inhaled Phage Therapy for Combatting Pulmonary Infections. Frontiers in Cellular and Infection Microbiology. 2021;11:758392. doi:10.3389/fcimb.2021.758392
Aslam S. Bacteriophage therapy as a treatment option for transplant infections. Current Opinion in Infectious Diseases. 2020;33(4):298-303. doi:10.1097/QCO.0000000000000658
Chronic Bacterial Prostatitis Treatment & Management: Approach Considerations, Antimicrobial Therapy, Additional Treatments. Published online August 17, 2023. Accessed December 4, 2023. https://emedicine.medscape.com/article/458391-treatment
Ding F, Han L, Xue Y, et al. Multidrug-resistant Pseudomonas aeruginosa is predisposed to lasR mutation through up-regulated activity of efflux pumps in non-cystic fibrosis bronchiectasis patients. Frontiers in Cellular and Infection Microbiology. Published online 2022:1025.
Xiong S, Liu X, Deng W, et al. Pharmacological Interventions for Bacterial Prostatitis. Frontiers in Pharmacology. 2020;11:504. doi:10.3389/fphar.2020.00504
Tkhilaishvili T, Winkler T, Müller M, Perka C, Trampuz A. Bacteriophages as Adjuvant to Antibiotics for the Treatment of Periprosthetic Joint Infection Caused by Multidrug-Resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;64(1):e00924-19. doi:10.1128/AAC.00924-19
Glonti T, Chanishvili N, Taylor P w. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. Journal of Applied Microbiology. 2010;108(2):695-702. doi:10.1111/j.1365-2672.2009.04469.x
Jeyaraman M, Jain VK, Iyengar KP. Bacteriophage therapy in infection after fracture fixation (IAFF) in orthopaedic surgery. Journal of Clinical Orthopaedics and Trauma. 2022;35:102067. doi:10.1016/j.jcot.2022.102067
Li X, He Y, Wang Z, et al. A combination therapy of Phages and Antibiotics: Two is better than one. International Journal of Biological Sciences. 2021;17(13):3573-3582. doi:10.7150/ijbs.60551
Khullar L, Harjai K, Chhibber S. Exploring the therapeutic potential of staphylococcal phage formulations: Current challenges and applications in phage therapy. Journal of Applied Microbiology. 2022;132(5):3515-3532. doi:10.1111/jam.15462
Aranaga C, Pantoja LD, Martínez EA, Falco A. Phage Therapy in the Era of Multidrug Resistance in Bacteria: A Systematic Review. International Journal of Molecular Sciences. 2022;23(9):4577. doi:10.3390/ijms23094577
Aslam B, Arshad MI, Aslam MA, et al. Bacteriophage Proteome: Insights and Potentials of an Alternate to Antibiotics. Infectious Diseases and Therapy. 2021;10(3):1171-1193. doi:10.1007/s40121-021-00446-2
Kiani AK, Anpilogov K, Dhuli K, et al. Naturally-occurring and cultured bacteriophages in human therapy. European Review for Medical and Pharmacological Sciences. 2021;25(1):101-107. doi:10.26355/eurrev_202112_27339
Jurado A, Fernández L, Rodríguez A, García P. Understanding the Mechanisms That Drive Phage Resistance in Staphylococci to Prevent Phage Therapy Failure. Viruses. 2022;14(5):1061. doi:10.3390/v14051061
Jones JD, Varghese D, Pabary R, Langley RJ. The potential of bacteriophage therapy in the treatment of paediatric respiratory infections. Paediatric Respiratory Reviews. 2022;44:70-77. doi:10.1016/j.prrv.2022.02.001
Ji J, Liu Q, Wang R, et al. Identification of a novel phage targeting methicillin-resistant Staphylococcus aureus In vitro and In vivo. Microbial Pathogenesis. 2020;149:104317. doi:10.1016/j.micpath.2020.104317
Li F, Tian F, Nazir A, et al. Isolation and genomic characterization of a novel Autographiviridae bacteriophage IME184 with lytic activity against Klebsiella pneumoniae. Virus Research. 2022;319:198873. doi:10.1016/j.virusres.2022.198873
Weinberg SE, Villedieu A, Bagdasarian N, Karah N, Teare L, Elamin WF. Control and management of multidrug resistant Acinetobacter baumannii: A review of the evidence and proposal of novel approaches. Infection Prevention in Practice. 2020;2(3):100077. doi:10.1016/j.infpip.2020.100077
Wu N, Zhu T. Potential of Therapeutic Bacteriophages in Nosocomial Infection Management. Frontiers in Microbiology. 2021;12:638094. doi:10.3389/fmicb.2021.638094
Ibrahim S, Al-Saryi N, Al-Kadmy IMS, Aziz SN. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Molecular Biology Reports. 2021;48(10):6987-6998. doi:10.1007/s11033-021-06690-6
Haddad S, Jabbour JF, Hindy JR, et al. Bacterial bloodstream infections and patterns of resistance in patients with haematological malignancies at a tertiary centre in Lebanon over 10 years. Journal of Global Antimicrobial Resistance. 2021;27:228-235.
Kaur G, Agarwal R, Sharma RK. Bacteriophage Therapy for Critical and High-Priority Antibiotic-Resistant Bacteria and Phage Cocktail-Antibiotic Formulation Perspective. Food and Environmental Virology. 2021;13(4):433-446. doi:10.1007/s12560-021-09483-z
Morrisette T, Kebriaei R, Lev KL, Morales S, ra, Rybak MJ. Bacteriophage Therapeutics: A Primer for Clinicians on Phage-Antibiotic Combinations. Pharmacotherapy. 2020;40(2):153-168. doi:10.1002/phar.2358
Cieślik M, Bagińska N, Górski A, Jończyk-Matysiak E. Animal Models in the Evaluation of the Effectiveness of Phage Therapy for Infections Caused by Gram-Negative Bacteria from the ESKAPE Group and the Reliability of Its Use in Humans. Microorganisms. 2021;9(2):206. doi:10.3390/microorganisms9020206
Borysowski J, Weber-Dabrowska B, Górski A. Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med (Maywood). 2006;231(4):366-377. doi:10.1177/153537020623100402
Kasman LM, Porter LD. Bacteriophages. In: StatPearls. StatPearls Publishing; 2023. Accessed December 27, 2023. http://www.ncbi.nlm.nih.gov/books/NBK493185/
Li XY, Lachnit T, Fraune S, Bosch TCG, Traulsen A, Sieber M. Temperate phages as self-replicating weapons in bacterial competition. Journal of The Royal Society Interface. 2017;14(137):20170563. doi:10.1098/rsif.2017.0563
Alvi IA, Asif M, Ur Rehman S. A single dose of a virulent bacteriophage vB PaeP-SaPL, rescues bacteremic mice infected with multi drug resistant Pseudomonas aeruginosa. Virus Res. 2021;292:198250. doi:10.1016/j.virusres.2020.198250
Durr HA, Leipzig ND. Advancements in bacteriophage therapies and delivery for bacterial infection. Mater Adv. 4(5):1249-1257. doi:10.1039/d2ma00980c
Pharmaceuticals | Free Full-Text | The Safety of Bacteriophages in Treatment of Diseases Caused by Multidrug-Resistant Bacteria. Accessed December 27, 2023. https://www.mdpi.com/1424-8247/16/10/1347
Liu S, Lu H, Zhang S, Shi Y, Chen Q. Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review. Pharmaceutics. 2022;14(2):427. doi:10.3390/pharmaceutics14020427
Van Belleghem JD, Dąbrowska K, Vaneechoutte M, Barr JJ, Bollyky PL. Interactions between Bacteriophage, Bacteria, and the Mammalian Immune System. Viruses. 2018;11(1):10. doi:10.3390/v11010010
Międzybrodzki R, Kłak M, Jończyk-Matysiak E, et al. Means to Facilitate the Overcoming of Gastric Juice Barrier by a Therapeutic Staphylococcal Bacteriophage A5/80. Front Microbiol. 2017;8:467. doi:10.3389/fmicb.2017.00467
Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z, et al. Bacteriophages and antibiotic interactions in clinical practice: What we have learned so far. Journal of Biomedical Science. 2022;29(1):23.
Lack of innovation set to undermine antibiotic performance and health gains. Accessed December 27, 2023. https://www.who.int/news/item/22-06-2022-22-06-2022-lack-of-innovation-set-to-undermine-antibiotic-performance-and-health-gains
Habusha M, Tzipilevich E, Fiyaksel O, Ben-Yehuda S. A mutant bacteriophage evolved to infect resistant bacteria gained a broader host range. Molecular Microbiology. 2019;111(6):1463-1475. doi:10.1111/mmi.14231
Jin Y, Li W, Zhang H, Ba X, Li Z, Zhou J. The Post-Antibiotic Era: A New Dawn for Bacteriophages. Biology (Basel). 2023;12(5):681. doi:10.3390/biology12050681
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hilal Abdessamad, Ahmad Afyouni, Amarelle Chamoun, Lara Dalal, Macram Wakim, Ali Toufaily

This work is licensed under a Creative Commons Attribution 4.0 International License.